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EPIGRAPH

When I get knocked down, I’ll get back up.

I may not be the smartest person in the room,

But I’ll strive to be the grittiest.

Angela Duckworth
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ABSTRACT OF THE THESIS

Benchmarking the Automated Analysis of In situ Plankton Imaging and Recognition

by

Kevin T. Le

Master of Science in Electrical Engineering

(Machine Learning and Data Science)

University of California San Diego, 2021

Nuno Vasconcelos, Chair

Jules S. Jaffe, Co-Chair

To understand ocean health, it is crucial to carefully monitor and analyze marine plankton – the

microorganisms that form the base of the marine food web and are responsible for the uptake of atmospheric

carbon. With the recent development of in situ microscopes, that collect images of these organisms in vast

quantities, the use of deep learning methods to taxonomically identify them has come to the forefront.

Given this data, two questions arise: 1) How well do deep learning methods such as Convolutional Neural

Networks (CNNs) identify these marine organisms using data from in situ microscopes? 2) How well do

CNN derived estimates of abundance agree with established net- and bottle-based sampling?
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Using images collected by the in situ Scripps Plankton Camera (SPC) system, we trained a CNN to

recognize 10 species of phytoplankton that are identified as associated with Harmful Algal Blooms (HABs).

The success of the CNNs is characterized using standard evaluation metrics. To compare abundance esti-

mates, we fit a linear model between the number of organisms of each species counted in a known volume

in the lab with the number of organisms collected by the in situ microscope sampling at the same time.

The CNNs evaluated on 26 independent natural samples collected at Scripps Pier achieved an av-

eraged accuracy of 92%, with 7 of 10 target categories above 85%. The linear fit between lab and in situ

counts of several key HAB species suggests in the case of these dinoflagellates there is good correspondence

between the two methods. The linear relationship derived for other organisms that were not as abundant is

not as conclusive as well as the failure of the SPC systems to successfully detect the diatom chain, Pseudo-

nitzschia.

Given the excellent correlation between lab counts and in situ microscope counts on key species,

the methodology proposed here provides a way to estimate an equivalent volume in which the employed

microscope can identify in focus organisms and obtain reasonably confident estimates of abundance. Given

the ease of collection and success of the method, we are hopeful that future systems can automatically

monitor HAB formers and other plankton.
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Chapter 1

Introduction

1.1 Motivation

Plankton are an extremely diverse group of underwater organisms with a profound effect on ocean

health [1]: they form the foundation of the food web, contribute to the early developmental stages of com-

mercially harvestable species and their abundance and composition are tightly related to hydro-climatic

change [2]. Planktonic organisms can also adversely affect the marine ecosystem by forming dense toxic

blooms, known as Harmful Algal Blooms (HABs), that can cause disease, or parasitize other organisms.

The appearance and composition of these HABs is a topic of intense research since they have deleterious

effects on human health, negatively affect fish stocks, and are linked to eutrophication that is likely to in-

crease in the coming years [3]. These biological impacts have serious economic ramifications and there is

urgent interest in developing inexpensive, automated ways to detect increased HAB abundance [4–7]. The

main goal of this study is to examine the potential for in situ imaging microscopy, supported by automated

deep learning algorithms, to provide reliable estimates of HAB species to make progress towards this goal.
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1.2 Related Work

Most HAB monitoring programs use traditional plankton sampling techniques, such as net tows

and bottle sampling [8]. These approaches require physically collecting the samples, chemically preserving

the organisms, and manually enumerating species with a lab microscope. This laborious process is severely

limited by a number of factors: net tows can damage delicate organisms during collection [9, 10]; certain

organisms may dissolve in the preservation solution without proper treatment [11]; and critically, physical

collection and subsequent analysis of the samples is expensive in terms of cost and human labor, resulting

in less frequent sampling than is desirable.

Due to these limitations, there is an increasing interest in the use of imaging systems to monitor

HABs. These systems have the capability to quantify organisms at very fine spatial and temporal resolution,

therefore providing a more scalable solution for long term analysis [2, 12–16]. Imaging systems use under-

water microscopes to continuously take images of plankton as they either freely flow through the camera’s

view [17, 18] or are transported via microfluidic system [19]. These systems do not require physically col-

lecting or concentrating water, chemical treatment of samples, or the use of counting chambers. However,

the major bottleneck for using in situ imaging instruments for monitoring is the sheer volume of data they

collect. To speed analysis, scientists have begun using automated classification methods, such as Support

Vector Machines and Convolutional Neural Networks (CNNs) that are capable of processing these large

imaging libraries [20–22]. The results indicate that CNNs can be used successfully for the classification of

marine organisms such as zooplankton, phytoplankton, coral, and fish [23–25].

Although the utilization of automated imaging and recognition systems for estimating plankton

abundance promises to expand in situ observational capacity, the methodology has yet to be widely adopted

for both scientific studies and monitoring programs. Several recent studies have been dedicated to compar-

ing submerged instruments against traditional lab counting methods, but a critical difference is that the im-

age data was manual, not automatically classified. Whitmore et al. [26] explicitly compared the Zooglider’s
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abundance estimates against MOCNESS net tows and acoustic data. Likewise, Sosik and Olson, [12] com-

pared manual counts from the IFCB images to manual bench top counts.

Conversely, other related studies focused on validating the automated estimation of plankton abun-

dance, but did not seek to compare the results to traditional methods. Gonzalez et al. [27] suggested that an

automated classifier’s performance can be improved by attempting to match the training set class distribution

to the eventual target population. Orenstein and Beijbom, [22] describes the workflow for leveraging out-of-

domain images to improve the CNN’s capability to classify plankton images. Gonzalez et al. [23] proposed

a number of automated quantification algorithms to improve plankton abundance estimates. Orenstein et

al. [28] proposed similar methods to reduce human annotators’ validation labor while reliably reproducing

plankton distributions. However, there still remains a gap in demonstrating how automated workflows that

employ imaging instruments paired with trained CNN classifiers agree with plankton population estimates

that use the more traditional lab counting methods.

1.3 Thesis Overview

In this article, we quantify the relationship between plankton population estimates derived from an

in situ imaging system, the Scripps Plankton Camera (SPC), with those obtained from bottle-based sampling

from surface samples followed by manual enumeration by a trained taxonomist. The SPC system consists

of two underwater microscopes that image undisturbed volumes of water that can freely flow between a

light source and a camera system. It has been operating nearly continuously for 5 years, resulting in the

two cameras collecting more than a billion images of plankton, detritus, sand, and other objects. Using data

from the SPC microscopes, CNNs have been trained to sort the resulting data and speed up ecological analy-

ses [17,22,28,29]. The Scripps Pier is also a sampling location for the on-going Southern California Coastal

Ocean Observing System (SCCOOS) HABMAP monitoring program (Kim et al., 2009) that has been enu-

merating HAB formers from weekly water samples since 2008. The methodology employs hand-drawn
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water samples and a modern variant of the Utermöhl method to count a variety of plankton and estimate the

abundance of HAB formers [30–32]. Here, we reference those lab-based abundance estimates as the “gold

standard” that provides a baseline for comparing our automated methods that are based on automatically

classified SPC data. If successful, the automated analysis workflow would provide an efficient, continuous

monitoring system to detect and monitor phytoplankton and provide real-time, detailed, and reliable HAB

warnings. The detection capability efficacy of both the imaging system itself and automated classification

is evaluated in this study.

Our study compares the consistency of the automated workflow for plankton count estimates ob-

tained via CNN classification of the SPC images (SPC+CNN-Pier) against those derived by a plankton

taxonomist counting hand-drawn, preserved samples under a microscope in the lab (Lab-micro). As a

bridge between the two methods, a subsample of the hand-drawn bottle samples was imaged by a benchtop

version of the SPC (SPC-Lab) and classified with an identically trained CNN (SPC+CNN-Lab). A substan-

tial issue here in using the SPC data to estimate abundance is to quantify the “effective” imaging volume

of the SPC systems. The complication arises as they employ a dark field method of illumination [17] that

we have found to produce optimal contrast to aid in identification. Unfortunately, this produces a range

and focus dependent set of images from an unknown, and likely species-dependent volume, given the var-

ious morphologies and contrast inherent in the plankton images. To address this issue, we decided to use

the raw counts of the various species as computed by the CNNs over a given time interval in comparison

to the raw counts obtained by the Lab-micro system. Here, a simple linear model was used to relate the

output of each method that then allowed us to determine an “effective” sample volume for the SPC. Using

these species-specific volumes, we constrain the concentration estimates to be consistent between the three

imaging modalities, SPC-CNN-Lab, SPC-CNN-Pier and Lab-micro. Details of the implementation and the

calculation of the species-dependent effective volume for the two most abundant species are described in

this article.
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The remainder of this thesis consists of five chapters, and is organized as follows:

In Chapter 2, we introduce our counting methods for measuring plankton abundances. We outline

how our deployment was taken and how each method operates. We also detail which species are selected

for the count comparisons.

In Chapter 3, we provide a brief overview on automated imaging classification. Specifically, we go

over CNN network training and implementation.

In Chapter 4, we present our analyses framework for evaluating classification performance, count

comparisons, and volume computation.

In Chapter 5, we present analysis on the previously mentioned items. Each item is intended to

convince the reader that the SPC+CNN can generate population estimates comparable to those produced

via established benchtop methods.

In Chapter 6, we summarize the contributions made in this thesis and discuss the trade-offs between

in situ imaging microscopy paired with CNNs and traditional sampling techniques.

In Chapter 7, we present our conclusion to this thesis. We also consider several potential directions

of future work and refer the reader to the appendix for supplementary information.
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Chapter 2

Counting Methods and Data Acquisition

2.1 Data Acquisition

Data for this study were obtained from three methods: traditional, lab-based microscopy from

collected samples, in situ automated imagery, and lab-based automated imagery. All samples were collected

from the end of the Ellen Browning Scripps Memorial Pier in La Jolla, CA (32◦52.02′N,117◦15.300′W )

from May through October 2019. Hand drawn samples were collected by SCCOOS personnel twice per

week in the morning by lowering a 2 L bucket five times to collect 10 L of water at a depth of approximately

0.5 m. 2 L was then allocated for the traditional microscopy studies with the remaining 8 L imaged by the

benchtop version of the SPC. The three sampling methods were then compared on 26 days during this time

interval.

2.2 Traditional Microscopy Analysis: Lab-micro

Plankton were enumerated using the Utermöhl method for quantitative phytoplankton analysis via

the routine monitoring program carried out by SCCOOS. This method will be referred to as Lab-micro

throughout this paper. Seawater was concentrated in sedimentation chambers after being fixed in a 4%

formaldehyde solution prior to manual counting. Once the sample settles, the upper chamber is removed
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and replaced with a covered with a glass cover slip and placed under an inverted microscope. Cells are then

classified to the lowest possible taxonomic level at 200x magnification and counted by a human operator

[30–32]. SCCOOS technicians typically examine the organisms from settling 10 or 50 mL of seawater.

However, the sample volume enumerated generally ranges from 1.25 mL to 12 mL based on the abundance

of phytoplankton. Thus, for the purposes of this study, all of the volumes were scaled to a consistent

volume of 1.76 mL volume. Although SCCOOS monitors additional species, we focus on the following 9

taxa: Akashiwo sanguinea, Ceratium falcatiforme or fusus, Ceratium furca, Chattonella spp., Cochlodinium

spp., Gyrodinium spp., Lingulodinium polyedra, Prorocentrum micans, and Pseudo-nitzschia spp. Here, the

presence of each species is reported in absolute counts from the calibrated sample volume.

2.3 Automated Imaging Systems: SPC-Pier and SPC-Lab

The SPC system is a set of two in situ underwater microscopes that are designed to observe undis-

turbed plankton populations [17]. The system does not employ filters, pumps, or nets; objects are imaged as

they drift through the field of view. An onboard embedded computer segments the raw frames, saving each

foreground object as individual Regions of Interest (ROIs). To restrict our interest to species that are less

than 60 µm in body size, we used the higher resolution SPC-MICRO that has a 5x objective and employs

dark field illumination to achieve a 40% contrast transmittance at a resolution of 5.0 µm. Pixel size in the

image plane is .74 µm over a 2.5 mm x 2.0 mm field of view. We considered this to be adequate to observe

organisms that are 10’s of microns in size without sacrificing too much “in focus volume” that drastically

decreases as the resolution is increased.

Two versions of the SPC-MICRO were used in this work: the SPC-Pier system, installed in situ at

the Scripps Pier and the SPC-Lab system, a lab based version for benchtop imaging. The SPC-Pier system

was moored at a tidally dependent average depth of 3 meters (Figure 2.1a). The SPC-Pier collected data

at a rate of 8 frames per second throughout the study period of May to October 2019, with a brief pause
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Figure 2.1: Imaging Systems. (a) SPC-Pier: SPC-MICRO Underwater Camera. (b) SPC-Lab: Benched
laboratory configuration of SPC-MICRO.

in September due to heavy biofouling. In order to enumerate “counts” an arbitrary temporal window of ±

1000 seconds was chosen for evaluation that was centered around the exact time of the hand sampling.

The SPC-Lab is a reconfigured benchtop version of the SPC-Pier. To support the imaging of hand

drawn samples, it was augmented with a gravity flow water system so that samples collected by SCCOOS

operators could be passed through a clear acrylic chamber positioned in the field of view of the system

(Figure 2.1b). This provided counts from the 8 L of water whose flow rate was kept constant by routinely

replenishing the elevated water bucket with more seawater to maintain a minimum of 2 L of fluid. The

sample chamber was flushed with filtered seawater between each run of seawater.

2.4 Species Selection and Manual Classification

In order to form a basis for comparing the observed image counts from the two SPC systems with

those of the Lab-micro, a team of 3 taxonomists sorted all images collected by both SPCs into 10 classes
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Figure 2.2: Image examples taken by the SPC-Pier, SPC-Lab, and Lab-micro. Each row is organized by the
SPC imaging system, while each column is the imaged species. We focus on studying the following 9 taxa (a
- i): Akashiwo sanguinea, Ceratium falcatiforme and fusus, Ceratium furca, Chattonella spp., Cochlodinium
spp., Gyrodinium spp., Lingulodinium polyedra, Prorocentrum micans, and Pseudo-nitzschia spp..

where 9 were considered to be the target organisms shown in Figure 2.2 and where a tenth was classified as

other that was used for the comparative count analyses. The other class is necessary to give the automated

classifiers a place to put ambiguous objects and avoid high false-positive rates [33]. We note that the

annotators only examined ROIs that had a projected major axis length between 30µm to 1000 µm as smaller

objects are not well resolved and larger ones were of extremely low counts.

2.5 Measurements

As illustrated in Figure 2.3, the entire data set consists of measuring plankton “counts” using 5

methods. The first method consists of SCCOOS’s traditional microscopy counts (Lab-micro). The next

two use the SPC-lab system. In one case, the images are manually classified (SPC-Lab). In the other,

they are automatically classified by a CNN (SPC+CNN) trained as discussed below. The remaining two

measurements use in situ SPC data (SPC-Pier). Two settings are again considered: manual (SPC-Pier) and

CNN-based (SPC+CNN-Pier) counts. For both SPC-Lab and SPC-Pier, the comparison to the automatic

counts (SPC+CNN-Lab and SPC+CNN-Pier, respectively) enables a quantification of human vs. classifier

performance on the same images. These comparisons also serve as a baseline for understanding the similar-

9



Trained CNN is deployed 
onto SPC image data to 

produce automated counts

Water Sampled 
continuous from 

~3m depth

Lab-micro (2L)
SPC-Lab (8L)

SPC-Pier

Text

Cell Counts 
Datasets 

Lab-Micro SPC-Lab SPC-PierSPC+CNN-Lab SPC+CNN-Pier

--- manually inspected counts

--- classifier predicted counts

Train and 
Validation Image 

Dataset
CNN Classifier

10 L Water Sampled 
from ocean surface 

twice a week

Image 
DatabaseImage 

Database

Figure 2.3: Sampling Method Comparison Framework for Plankton Abundance. The diagram outlines where
the samples are collected from their respective locations using 3 sampling methods: the Lab-micro, SPC-Lab,
and SPC-Pier. Trained CNNs were then deployed onto the resulting data to produce CNN counts (SPC+CNN-
Lab and Pier).

ities and differences between the classical lab analysis (Lab-micro), laboratory microscopy (SPC-Lab), and

in situ microscopy (SPC-Pier).
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Chapter 3

Automated Imaging Classification

3.1 Convolutional Neural Networks

To test the accuracy of automatically generated species counts, we trained a collection of convo-

lutional neural networks (SPC+CNN) to test on SPC-Lab and SPC-Pier images. A CNN builds an image

representation for classification through a sequence of non-linear operations, including convolutions, non-

linear rectification units, and pooling. The parameters in and between each layer are learned from training

data. The representation is hierarchical, in the sense that early layers detect low-level features (such as col-

ors or oriented edges), while deeper layers learn more abstract, high-level features (such as flagella or horns

of plankton). Once trained, CNNs can rapidly process large amounts of image data and have been shown to

outperform other methods, such as ensemble or margin-based classifiers [34]. We use the ResNet-18 model,

a shallow variant of the ResNet [35] architecture with a small parameter space, that is quick to train and less

likely to overfit to the relatively small training sets we collected [36].

3.2 Network Training

The SPC+CNN was trained in two fine tuning stages: (i) We fine tuned a ResNet-18 pre-trained on

the ImageNet database [37] with SPC phytoplankton images. (ii) The resulting network was again fine tuned
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Table 3.1: Training, validation and test datasets to train SPC+CNN. Datasets are organized by the fine-tuning
stage of the SPC+CNN because of the double fine tuning to adapt each network to the SPC-Pier and SPC-Lab
after learning more general representations of plankton.

Dataset Fine Tuning Stage Data Number of Classes Number of Images

Phytoplankton-Train 1 Train 30 29,196

Phytoplankton-Val 1 Validation 30 7,750

SPC-Pier (n=25 dates) 2 Train 10 avg ∼39,000

SPC-Pier (n=1 date) 2 Train 10 778

SPC-Lab (n=1 date) 2 Train 10 745

on just the nine classes of interest from either SPC-Pier or SPC-Lab. Fine tuning repurposes the weights

of a network trained for a particular task to a different target. The procedure reduces training time and

improves accuracy when training with small datasets [38]. Double fine tuning further adapts each network

to subtle differences between the SPC-Pier and SPC-Lab data after learning more general representations

of plankton [22].

The first fine tuning step uses a labeled phytoplankton training set from the SPC-Pier system com-

prised of 37,147 images spanning 51 classes. This dataset was produced by 17 expert taxonomists from the

US West Coast during a three-day workshop geared toward encouraging interactions between ecologists and

engineers. The annotated ROIs in the workshop dataset came from an earlier portion of the SPC-Pier time

series and has no temporal overlap with the data acquired in our experiment. Experts sorted the annotated

ROIs into 45 taxonomic classes and 6 noise categories, which included the 9 HAB species of interest. The

workshop dataset was minorly adjusted by combining categories of the same species tagged with semantic

descriptors such as the number of cells (e.g. Ceratium furca pair vs. single) and eliminating categories with

less than 300 images. This resulted in a total of 30 classes, 24 identifiable species and 6 noise categories.

80% of the 36,496 images were then randomly chosen for training (Phytoplankton-Train) and the remaining

20% used for validation (Phytoplankton-Val) (Table 3.1).
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The second fine tuning step has two objectives: (i) force the network to recognize only the 9 species

of interest and the background class Other in the SPC-Pier and SPC-Lab dataset; and (ii) account for dataset

shift, the well-known property that classifiers can be sensitive to changes in the input data, both the appear-

ance of the images and the relative distribution of the classes between training and testing [23, 28, 39, 40].

There are several examples of dataset shift between our training sets, notably the slight variations in illu-

mination between images captured by the SPC-Pier and SPC-Lab systems (Fig 2.1). In addition, for the

second fine tuning, the classifier is fine tuned to the collected SPC-Pier dataset, which was partitioned in

a leave one-out cross-validation manner for training and testing. Specifically, the model is trained on data

from all dates from the SPC-Pier except for one, which is used as a held-out test set (Table 3.1). The same

procedure is repeated several times with each sampled date being used as a held-out set once, and perfor-

mance metrics are averaged across all 26 days. The training sets for each cross-validation iteration contain

approximately 39,000 images, and test sets respectively hold 745 and 778. The restriction to fine tuning to

only the SPC-Pier image dataset is specifically meant to examine the potential effects of dataset shift when

the classifier is deployed on a new target domain, in our case the SPC-Lab. Training on SPC-Pier and testing

on SPC-Lab data is a proxy for the more general transfer of a classifier trained on an in situ imaging system

to an in vitro imaging system.

To prevent overfitting, images were subject to random affine transformations – rotations and trans-

lations. Data augmentation enables the creation of additional training examples without the burden of

additional data collection and is, thus, frequently used in CNN training. Prior to the random affine transfor-

mations, images are padded into a square image and resized into 224 x 224 pixels.

Throughout each phase of the training procedure, the cross-entropy loss was weighted inversely

proportionally to the class distribution of the corresponding training dataset, to mitigate potential class im-

balance problems [41]. Note, this also includes recomputing the weight of the loss for each cross-validated

model training.
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3.3 Network Implementation

In implementing the first stage, the base ResNet-18 model pretrained on ImageNet was fine tuned

for 50 epochs on the 30-class phytoplankton taxonomy workshop dataset. Model weights that achieved the

lowest loss on the validation set during the 50 epochs were utilized. In this stage, the model achieved an

accuracy of 95.5% on the Phytoplankton-Train set and accuracy of 95.2% on the Phytoplankton-Val set.

The second stage was initialized with the model weights learned in the first stage, where the final layer

was replaced with a layer of 10 outputs (9 categories of interest plus Other). Fine tuning to the leave-

one-out cross-validation training datasets was performed for an additional 50 epochs with model weight

selection corresponding to the lowest training loss. This resulted in a collection of 26 trained models, where

each model is tested on an independent date from the SPC-Pier and SPC-Lab dataset. Counts produced

by the CNN on all independent test samples respective to the system refer to this collection of models

(SPC+CNN). All models were trained with an initial learning rate of 0.001 and a batch size of 16 using

Adam optimizer [42]. Models were trained on a NVIDIA Titan Xp GPU. Python code used to train and

evaluate the models is available at https://github.com/hab-spc/hab-ml.
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Chapter 4

Analyses

To compare the 3 sampling methods, we used the total number of counts for each species collected

on each of the 26 independent days. Although relative abundance is a widely used measure of plankton

distributions, we use raw counts of each species as the volume of interrogation of the SPC systems is

unknown in detail and comparisons of relative abundance are corrupted by the numerical instability caused

by frequent counts of 0 or 1. Additionally, Lab-micro counts were scaled to a consistent sampling volume

of 1.76 mL due to the previously mentioned fluctuating sample volume sizes. This then facilitated the use

of a linear model to compute the effective sampling volume of the SPC+CNN systems as considered in the

following sections.

With the species-specific counts, we performed 1) An assessment of the classifier performance and

2) a comparison between the Lab-micro counts and SPC+CNN counts. A baseline comparison between

the Lab-micro counts and manually enumerated SPC counts is also included to compare to the SPC+CNN

counts. To relate the SPC-CNN counts of both the Pier and lab implementation, we explored the use of a

linear model to relate those counts to those of the Lab-micro. The relationship is based on the hypothesis

that a fraction of the organisms present, α , are detected and classified using the SPC system when coupled

with the CNNs. Hence,

CSPC+CNN = αCLab−micro (4.1)
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that relates the SPC+CNN counts to the Lab-micro counts. The multiplicative scaling factor α takes into

account the differences in contrast, aspect dependence, additional noise from out of focus objects (in the

SPC+CNN) and any other exclusive in situ imaging factors. It was estimated by computing a linear regres-

sion between each pair of counting methods. A separate model is fit for each of the 9 species across all 3

pairs: SPC+CNN-Lab vs. Lab-micro; SPC+CNN-Pier vs. Lab-micro; and SPC+CNN-Pier vs. SPC+CNN-

Lab.

4.1 Classification Analyses

Our collection of double fine-tuned classifiers is applied to the 26 held out test sets collected by

SPC-Lab and SPC-Pier to evaluate performance. Thus, performance results from our CNN are averaged

across the test sets. Classification performance is assessed by 1) Accuracy (ACC), the fraction of correct

predictions, 2) Mean class accuracy (MCA), the average correct predictions over each individual class, and

3) the F1 score, a metric for scoring class-imbalanced problems. Together these metrics capture both model

generalization ability and bias towards highly populated classes – ACC characterizes the overall classifier

performance while MCA and F1 scores assess how well the system does on a per class basis. Significant

differences between the three chosen metrics might indicate in the results that it favors common classes

while underperforming for rare ones.

4.2 Counting Analyses

Counts are compared across the 3 sampling methods under both cases of using the manually enu-

merated SPC counts and automated SPC+CNN counts. Results of these comparisons are measured by

computing the Pearson Correlation Coefficient, a measure of linear correlation between two variables, and

the estimation of both factor α and R2, a percentage of the variance explained by the model relative to the
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total variance, from the computed linear regression between each pair of counting methods. In conjunction,

these measurements express how related the counting methods are [43].

To estimate the factor α , we simply took the slope from the proportional equation 4.1 that results

from comparing the SPC-CNNs to the Lab-micro counts. The model was fit with a linear-linear least squares

estimator, assuming zero intercept. However, for display purposes, the data was transformed to a log scale

4.3 Volume Computation Analyses

An important aspect of our work is the resultant estimation “effective sampling volume” for each

species that is a result of the focus dependent dark field imaging scheme employed by the microscope.

Assuming that the concentration of the species that were counted by each method is the same, we can

divide equation 4.1 by an effective volume on the right-hand side (VSPC+CNN) and a true volume taken from

the lab procedure on the left-hand side (VLab−micro) to equate the two. Equating first the two concentrations

and then making the substitution, we obtain

CSPC+CNN

VSPC+CNN
=

CLab−micro

VLab−micro
(4.2)

αCLab−micro

VSPC+CNN
=

CLab−micro

VLab−micro

Which implies that:

VSPC+CNN = αVLab−micro (4.3)

We note that this volume was normalized to be 1.76 mL for the Lab-micro counts and was integrated over

the 2000 seconds of images taken at 8 Hz for the SPC-Pier. Of the possible abundant and rare species for

the SPC+CNN volume computation, we selected only abundant species that were significantly correlated

via the Pearson correlation with the Lab-micro observations, as opposed to rare species of frequently low

counts.
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Chapter 5

Results

Over the course of 5 months, 43 independent plankton samples were acquired via Lab-micro, SPC-

Lab, and the SPC-Pier. After common quality assurance checking, 26 days were deemed suitable for anal-

ysis as several days were inconsistent in the sampling times across the 3 methods mainly due to events such

as the heavy biofouling of the SPC-Pier or unaccounted manual sample collection and imaging. 21,211

images from the SPC-Lab and 20,148 images from the SPC-Pier were manually classified in 10 categories

– 9 species of interest and all remaining images as the 10th category, called “other”. The 26 independent

samples from both datasets were largely dominated by the “other” category (83% of the SPC-Pier total

and 92% of the SPC-Lab total). The resulting manual counts are denoted as SPC counts. CNN-produced

counts on the same dataset are denoted SPC+CNN counts. Lab-micro counts were produced by the human

annotator.

In general, Lab-micro collected more total counts of the 9 target species, over the set of images,

than the SPC systems (Figure 5.1a). Averaged over all 26 independent samples, Lab-micro count data was

predominantly composed of 3 common species: Pseudo-nitzschia spp., Lingulodinium polyedra, and Pro-

rocentrum micans (Figure 5.1b). The latter two also dominated both SPCs’ counts. However, in the case of

the SPCs, the Pseudo-nitzschia spp. counts were notably less. Possible reasons for this are potentially due

to either the inability of the dark field imaging to successfully image Pseudo-nitzschia spp. cells or whether
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Pseudo-nitzschia spp.
Prorocentrum micans

Lingulodinium polyedraGyrodinium spp.Cochlodinum spp.Chattonella spp.
Ceratium falcatiforme or fusus

Ceratium furcaAkashiwo sanguinea
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Average Count (per day)

Figure 5.1: Species Enumerated. (a) Total count collected by each method time series. (b) Average count per
day per species collected by each method. Throughout the collection, the species composition was dominated
by abundant species, such as Lingulodinium polyedra and Prorocentrum micans, while some rarely appeared.

the projection of the organism from 3-dimensions into a 2-dimensional image created lower detection abil-

ities. We do note that in Kenitz et al. [29] many diatoms were well detected. Rare dinoflagellate species

(namely Akashiwo sanguinea, Ceratium falcatiforme or fusus, Ceratium furca, Chattonella spp., Cochlo-

dinium spp., and Gyrodinium spp.), were more often observed by the SPCs than the Lab-micro suggesting

the methodology has some taxonomic dependence.

5.1 Classification Performance

Table 5.1: Average classification results of a double fine-tuned model tested on independent, held-out samples
collected by the SPC-Pier and SPC-Lab. Evaluation metrics used are ACC, MCA, and F1 Score.

Dataset ACC MCA F1 Score

SPC-Lab 0.92 0.68 0.47

SPC-Pier 0.92 0.74 0.64

The averaged ACC, MCA, and F1 Score performance of a CNN trained on our data were mea-
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sured from a CNN tested on independent samples from the 26 SPC-Pier and SPC-Lab image datasets. Our

CNN achieved averaged test accuracies of 92% with high 95% on both the SPC-Lab and SPC-Pier data

(Table 5.1). The MCAs were lower (68 and 74%) suggesting an unbalanced performance across classes.

This discrepancy between the metrics is due to species that are relatively rare to the SPC (e.g. Ceratium

falcatiforme or fusus, Chattonella spp., and Pseudo-nitzschia spp.) and would then result in less training

data to effectively learn the species’ morphology. The F1 scores were the lowest of the three (47 and 64%),

due to the CNNs’ frequent overestimation of the number of HAB species which is penalized in the F1 score

for poor precision (Supplemental Figure 8a). Such class imbalance in the training dataset has a large effect

on the learned model and is a well-established feature of training CNNs on natural populations.

Inspection of the confusion matrices for the CNN performance on the SPC-Pier versus SPC-Lab is

shown in Figure 5.2a. As illustrated, the CNN performed significantly better on the SPC-Pier than on the

SPC-Lab based on the MCA and F1 score difference. For half of the tested species (Akashiwo sanguinea,

Ceratium furca, Cochlodinium spp., Lingulodinium polyedra, Prorocentrum micans) the accuracy dropped

more than 10% from SPC+CNN-Pier to SPC+CNN-Lab, especially Lingulodinium polydra (Figure 5.2b).

This is a manifestation of the domain shift between the SPC-Pier and SPC-Lab image methods, namely the

laboratory conditions from using a flow-through system that appeared to result in more out-of-focus images

that rendered the species differentiation more difficult. This was not unexpected, given that the model is

only trained on pier data, however, it does illustrate that deployment of the same imaging system under

settings may require fine-tuning of the classifier.
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(2) SPC-Pier(1) SPC-Lab(a)

(b)

Figure 5.2: Quantification of the classification accuracy for SPC test sets. (a) Confusion Matrix. (b) Diagonal
class accuracies of confusion matrix, sorted in a descending fashion from left to right

5.2 Comparison between Lab-micro and SPC+CNN counts

The Pearson correlation analysis on the intermediary comparison of the Lab-micro and manually

enumerated SPC counts reveals high-to-very high correlations between the sampling methods on 4 out of

the 9 species– Akashiwo sanguinea, Cochlodinium spp., Lingulodnium polyedra, and Prorocentrum mi-

cans– representing a mix of abundant and rare organisms (Figure 5.3a). The other 4 species; Ceratium

falcatiforme, C. fusus, Chattonella spp., Gyrodinium spp., and Pseudo-nitzschia spp., demonstrated a pat-

tern of scoring low correlation scores for two out of the three pairs. The last of the 9 species, Ceratium

furca, was different of this trend, showing moderate correlation between both SPC methods and the Lab-
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Figure 5.3: Pearson Correlation Coefficient Matrices. Each row is a compared setting, while each column is
the corresponding species. Coefficient values are color coded with respect to the species correlation value of
the compared setting, in an ascending fashion. (a) Correlation of Lab-micro vs. manually enumerated SPC
counts. (b) Correlation of Lab-micro vs. SPC+CNN counts.

micro (0.58 and 0.70). We believe that it is likely these high variances are due to low counting number of

the rarer species.

In general, the SPC+CNN vs. Lab-micro correlations produced similar results to the baseline corre-

lation values between the manually enumerated SPC vs. Lab-micro counts (Figure 5.3b). The same 4 species

that previously produced high-to-very high correlations were consistent when using SPC+CNN counts, with

correlation value differences up to 10%. The correlation differences were due to the previously mentioned

unbalanced performance across the classes from the SPC+CNN, that comes from using imbalanced training

data. In the case of the SPC+CNN-Lab vs. Lab-micro, we can observe many correlation scores drop which
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we can attribute to the domain shift problem. This is yet another demonstration of the need for network fine

tuning in the domain where the network is applied.
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Figure 5.4: Relationships between counts of Lab-micro and SPC+CNN methods. Columns are the pair of
counting methods, while the rows are organized by species. The solid line indicates the linearly fitted model
and is coupled with multiple shaded areas indicating the 95% prediction (dark shade) and confidence interval
(light shade). The slope and R2 of the model are indicated in the panel

To further evaluate the relationship between counts of the Lab-micro and SPC+CNN, we computed

a least squares regression between the species-specific counts acquired by each method. Figure 5.4 dis-
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plays results of the linear fitting on a log-scaled graph for 4 of the species, while the other 5 species can

be found in the Supplemental Figure A.3. Similar to the results of the Pearson correlation analysis for

the pair of SPC+CNN-Pier vs. Lab-micro, we found that the less abundant species (Akashiwo sanguinea,

Cochlodinium spp.) produced high R2 values, as well as the more abundant species (Lingulodinium polye-

dra, Prorocentrum micans). We also observed a pattern of the size of the prediction and confidence bands

being related to the occurring frequency of the species. The two abundant species showed much narrower

prediction and confidence bands, in contrast to the two rare species, which exhibited wider bands. Discrep-

ancy of the size of the bands could be due to the sparse signal that comes from sampling rare species. The

comparability observations of the 4 species could also be validated by the linearly fitted models between

these species counts of the Lab-micro and manually enumerated SPCs (Supplementals A.2), which only

showed marginally different R2 values.

In a general comparison of the linear fit computed by the model across the 3 possible pairs, we

can observe the strongest linear relationship amongst the SPC+CNN-Pier and SPC+CNN-Lab. The results,

specifically the proportionality approximation, convey that the SPC+CNN-Pier’s sampling of an aggregate

volume over the 2000 seconds was nearly 2x that of the SPC+CNN-Lab. Regarding the other 5 species,

a majority of these species showed non-existing-to-poor linear relationships between the Lab-micro and

SPC+CNN counts (Figure A.3). The linear fit for the Pseudo-nitzschia spp. showed little ability to model

the relationship between the SPC+CNN and Lab-micro, as the SPC itself poorly detected the diatom chains.

Gyrodinium spp. was mostly absent from the Lab-micro, preventing a linear regression between the com-

pared counts. Species that had previously demonstrated low classification performance resulted in poorer

relationships when computing the linear regression for the CNN-based pairs of counting methods. Compar-

atively to its manually enumerated-based linear regressions (Supplemental A.4), Ceratium falcatiforme or

fusus and Chattonella spp. showed degraded R2 values and slopes across all 3 possible pairs, suggesting the

effect of the classification performance upon the linearly modeled relationship. Ceratium furca also showed
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some fluctuations when comparing automated vs manual regressions, but generally showed only a moderate

relationship.

5.3 Volume Computation

Table 5.2: Calibrated SPC+CNN-Pier Sampling Volume Per Image. This calibration assumes a sampled Lab-
micro volume of 1.76 mL and 2000 seconds of images at 8 Hz that were collected and classified for each
species by the SPC+CNN-Pier.

Species Proportionality Volume In-Focus (mL)

Lingulodinium polyedra 0.39 4.29 x 10−5

Prorocentrum micans 2.02 2.22 x 10−4

A significant feature of the work reported here is the computation of the “effective sampling vol-

ume” of the SPC-CNN results that permits the estimate of organism abundance. Considering the most

abundant and highly correlated species (Lingulodinium polyedra and Prorocentrum micans) equation 4.3

can be used to compute this volume using the slope of the fit as displayed in Figure 5.4. Given that this

slope is (.39, 2.02) and that the reported Lab-micro samples a 1.76 mL sample volume, our cumulative sam-

pling volume for 2000 seconds of images at 8 Hz is (.69, 3.56) mL. Then, the “effective sampling volume”

per image is estimated as (0.043, 0.22) µL after dividing by the 16000 frames.

5.4 Continuous Observation Data

One major advantage of the SPC-Pier system is that it can observe plankton continuously with a

variable integration time to aggregate totals for the species, we viewed the systems’ output over our 2000

seconds integration time over the total period of operation from the end of May until October 2019. The

data are displayed in Figure 5.5. Here, the continuous grey line indicates counts of the 4 species from the

SPC+CNN during both the lab sampling occurrences as well as other times where there were not manually
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collected samples. Here we note the increase in the Akashiwo sanguinea and Cochlodinium spp. during and

in between the lab samples as well as the absence of increased abundance for the Lingulodinium polyedra

as well as the Prorocentrum micans.

Co
un

ts

Akashiwo sanguinea

Cochlodinium spp.

Lingulodinium polyedra

Prorocentrum micans

Figure 5.5: Time series of species abundances observed during a 3-month deployment via the SPC-pier and
the SCOOS monitoring program during 2019. Automated image classification was used to produce counts on
periods not sampled by the SCOOS program. Plots are shown for only the highly correlated abundant and rare
species.
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Chapter 6

Discussion

In recounting the goals of the work reported here we first sought to explore the ability of CNNs

to correctly classify the images that were recorded from the SPC systems. Although lab-based taxonomy

of the phytoplankton species is well established, the correspondence between those species and our dark

field microscopes has not been established in in the context of the lab work. In examining the potential

differences that could contribute between the two methods, Lab-micro vs. SPC+CNN, there are several

factors to consider. As described, the samples observed by the SPC microscopes are present in a ranged

based defocus that is a necessary consequence of the dark field illumination. In addition, since the SPC

microscopes image organisms that are freely drifting in the field of view of the system, a natural assumption

is that their orientation, relative to the viewpoint of the camera, is uniformly random. In contrast to larger

zooplankton, such as copepods, our organisms of interest have smaller morphological differences that are

also confounded by the aspect dependent views that we observe. This makes the identification more difficult

for automated systems as well as taxonomists viewing the resultant SPC images.

In considering the success of the CNNs to classify the species present in the images, we found

that the imbalanced nature of datasets collected in the wild influenced the performance of the system sig-

nificantly. We note that class imbalance is a well-studied problem that exists in many real-world ocean

ecosystem datasets (e.g. WHOI-plankton [24], EILAT and RAMAS coral dataset [44]) in which rare species
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have far fewer images than abundant species. To combat this problem, we applied transfer learning from

a less-imbalanced and filtered dataset to a more-imbalanced and unfiltered one. We also applied cost-

sensitive learning, one of the techniques commonly used to improve the performance of class imbalanced

classification [41]. However, the results of comparatively low performance on rare classes suggest a lim-

ited capability of our techniques to mitigate the class imbalance problem. As a future direction, to further

improve our model, it would be worth experimenting with other methods, such as an ensemble of CNN

models [45]; transferring parallel CNNs [46]); or applying transfer learning by pre-training with class-

normalized data [47].

Compared to the class imbalance problem, domain shift is less discussed in deep learning applica-

tions on ecosystem literatures. However, our results suggest that this problem deserves critical consideration

when deep learning systems are to be deployed on a testing environment different from that used for train-

ing. Many zooplankton detection systems, such as ZooplanktoNet [48], Zooglider [26], did not explicitly

address and investigate their deep learning models’ capability to transfer across domains. When purely

trained on SPC-Pier image data, our model was not able to replicate its high performance on SPC-Lab

data. Compared to the test result of SPC-Pier, half of tested classes in SPC-Lab have noticeably lower

class accuracies. The class accuracies of Prorocentrum micans and Lingulodinium polyedra dropped the

most from SPC-Pier to SPC-Lab. Compared to SPC-Pier data, the Lingulodinium polyedra appeared to be

dimmer and more transparent in the SPC-Lab data, whereas Prorocentrum micans tend to be lighter colored

(shown in appendix). In future research, experimenting with other domain adaptation techniques, such as

similarity learning [49], image-to-image translation [50], can help further improve our model. Solving the

domain shift problem is essential to ensuring the reliability of deep learning automated systems in different

environments.

Considering the (9) species investigated here, the significant correlation between the Lab-micro

counts and the SPC+CNN-Pier data for Prorocentrum micans and Lingulodinium polyedra indicates that,
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under the environmental and lab identification procedures developed here, the in situ system counts can be

transformed into estimates of concentration that are “consistent” with traditional microscopy observations.

These correlation results were also consistent when using the manually enumerated SPC counts instead of

the SPC+CNN. This illustrates that any potential limitations could be due to the in situ imaging system

sampling factors which our multiplicative scaling factor α seeks to address in our volume computation

analysis.

Both the SPC methods and Lab-micro show gaps in their ability to detect certain species. Firstly,

Lab-micro only detected Gyrodinium on one day, while both SPC methods detected it on more than 20 of

the 26 days. We found this to be due to the formaldehyde treatment used during the Lab-micro’s sample

sedimentation process. Specifically, fixing samples with formaldehyde solution can lead to dissolvement

and subsequent misidentification of “naked” species like Gyrodinium spp. [51]. On the other hand, the SPC

methods show difficulty detecting Pseudo-nitzschia spp.. Whether this is due to the inefficiency of the dark

field imaging technique or, rather, some effects related to their chain like structure when viewed in 3D is

unknown. We do note, however, that there may be some advantages to observing settled samples.

As the other major goal of this research, we sought to estimate the “effective sampling volumes”

so that abundance could be estimated, an important metric. Here, we note that, as reported on the web site,

(spc.ucsd.edu) the SPCP2 camera, which is the one being used here, has a “high-resolution image volume”

of .1 µL and a “Blob detection volume” of 10 µL. The sample volumes reported in Table 5.2 of .043

µL and .22 µL for Lingulodinium polyedra and Prorocentrum micans, respectively, for the SPC+CNN-

Pier are marginally less, likely due to the fact that the system has only one view angle that can result

in ambiguities that prevent the unique identification of the species. We note also that in comparing the

SPC+CNN-Lab values of the slope vs Lab-micro, the proportionalities are approximately half of these

values. The discrepancy may be because the SPC-Lab samples were taken from the near-surface of the

ocean (0.5m), whereas the SPC-Pier samples from a tidally dependent depth of 3 meters. Alternatively, the
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difference may be due to orientation-dependent effects that were a result of “flowing” the collected water

past the SPC-Lab or rather some differences in the two optical systems, such as illumination intensity. We

also note that less abundant species (e.g. Akashiwo sanguinea and Cochlodinium spp.) had a reasonable fit

between the SPC-Pier and the Lab-micro, with the SPC-Pier having a larger slope and hence, an estimated

larger sampling volume. However, in these cases, the certainty of these values is less due to the small

number of samples.

A distinguishing feature of this analysis is that the “effective sampling volumes” as computed via

comparison with the Lab-micro calibrations are different for each of these species (e.g. Lingulodinium

polyedra and Prorocentrum micans). The difference in sampling volume amongst each species was not

entirely unanticipated as our dark-field illumination setup measures an orientation varying image of these

organisms, thereby causing CNNs and expert taxonomists to likely be less capable of measuring the exact

identity for each species. Consequently, our linear fit for each of the species has a different slope, leading

to different effective sampling volumes that are species dependent.

An important aspect of in situ sampling is that it is capable of detecting organisms on a 24/7 basis.

As demonstrated in Figure 5.5, the in situ microscope can provide continuous, real-time sampling during

periods when there was no manual data collection. The period from May to October 2019 provided roughly

128k images during this period via the automated sampling. The values obtained for the Lingulodinium

polyedra and Prorocentrum micans study showed realistically gradual abundance increases and decreases

of both, that occur before and after a detected bloom. Rarer species, such as Akashiwo sanguinea and

Gyrodinium spp., also showed similar trends but demonstrated increases in abundance were missed by the

manual collection. Although a more detailed analysis would be needed to estimate the confidence in these

observations, it seems that these cell estimates are simply undetected because of the less frequent sampling

by the Lab-micro. This, in turn, highlights the need of real-time continuous monitoring with less human

effort. With reference to Figure 5.5, we note that the lower estimates of the SPC systems during the times
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between July and October indicated that there were no significant blooms. We also note that for the other

species, the Akashiwo sanguinea and Cochlodinium spp., there were significant peaks in their number of

counts that were outside of the sampling times for the Lab-micro studies here, however, given the low

numbers of counts during the intervals where there were both Lab-micro and SPC samples, the confidence

in predicting abundance from the SPC-Pier counts could be suspect. We do, however, note that given the

continuous nature of the SPC data stream that a set of algorithms could be implemented that would then

motivate adaptive sampling that would result in lab quantification and clarification.

One advantage of systems, like SPC+CNN, that produce real time data is their potential use as an

early detection system. The early, data-driven insights would inform decision making in monitoring pro-

grams, such as SCCOOS, for which shore station leaders have limited information on the daily abundance

level of the HAB species. For example, previous studies show that it can be advantageous to know the initial

and final periods of a bloom [52]. Stroming showed the socioeconomic benefit of early HAB detection and

estimated a saving of $370,000 following the early warning of a 2017 cyanoHAB event in Utah Lake. Given

the strong validity found in the present study for estimating HAB abundances, the recommended next steps

would be to explore the use of the SPC for supporting decision-making in such settings.

31



Chapter 7

Conclusion

In summary, the SPC+CNN workflow has shown its capability to provide real-time, high accuracy

detection of HABs on certain species, such as Akashiwo sanguinea, Cochlodinium spp., Lingulodinium

polyedra and Prorocentrum micans. Although its performance has been species-dependent, it has shown

a high correlation with the Lab-micro counts. Moreover, this automated workflow can detect rare species

more frequently than the manual method. It also minimizes manual labor and can provide continuous

sampling at a high spatial and temporal resolution. All of these benefits make the SPC+CNN a poten-

tially important tool that has the capability to advance the study of imaging, recognition, and monitoring

of HAB-related phytoplankton. The results suggest that image-based monitoring systems, supported by

high-throughput automated classifiers, can be a reliable alternative to time-consuming manual sampling

campaigns. Moreover, our experimental techniques and analyses provide a framework for future intercali-

bration studies of innovative new plankton sampling modalities.
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Appendix A

Supplementary Information

A.1 Comparison of Lab-micro vs. SPC and SPC+CNN

Below are supplementals to the analysis of the linearly fitted models between the SPC+CNN vs. Lab-micro

counts along with our previous analysis referenced in Section 5.2.

To further evaluate the relationship between counts of the Lab-micro and SPC+CNN, we computed

a least squares regression between the species-specific counts acquired by each method. Figure 5.4 displays

results of the linear fitting on a log-scaled graph for 4 of the species, while the other 5 species can be found

in the Supplemental Figure A.2. Similar to the results of the Pearson correlation analysis for the pair of

SPC+CNN-Pier vs. Lab-micro, we found that the less abundant species (Akashiwo, Cochlodinium) produced

high R2 values, as well as the more abundant species (Lingulodinium polyedra, Prorocentrum micans). We

also observed a pattern of the size of the prediction and confidence bands being related to the occurring

frequency of the species. The two abundant species showed much narrower prediction and confidence

bands, in contrast to the two rare species, which exhibited wider bands. Discrepancy of the size of the bands

could be due to the sparse signal that comes from sampling rare species. The comparability observations

of the 4 species could also be validated by the linearly fitted models between these species counts of the

Lab-micro and manually enumerated SPCs (Supplementals A.2), which only showed marginally different
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Figure A.1: Relationships between Lab-micro and SPC+CNN: Strongly linear-related species (Akashiwo san-
guinea, Cochlodinium spp., Lingulodinium polyedra, Prorocentrum micans)
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(a) SPC-Lab vs. Lab-micro (b) SPC-Pier vs. Lab-micro (c) SPC-Pier vs. SPC-Lab
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Figure A.2: Relationships between Lab-micro and SPC: Strongly linear-related species (Akashiwo sanguinea,
Cochlodinium spp., Lingulodinium polyedra, Prorocentrum micans)
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In a general comparison of the linear fit computed by the model across the 3 possible pairs, we

can observe the strongest linear relationship amongst the SPC+CNN-Pier and SPC+CNN-Lab. The results,

specifically the proportionality approximation, convey that the SPC+CNN-Pier’s sampling of an aggregate

volume over the 2000 seconds was nearly 2x that of the SPC+CNN-Lab. Regarding the other 5 species,

a majority of these species showed non-existing-to-poor linear relationships between the Lab-micro and

SPC+CNN counts. The linear fit for the Pseudo-nitzschia spp. showed little ability to model the relation-

ship between the SPC+CNN and Lab-micro, as the SPC itself poorly detected the diatom chains. Gyro-

dinium spp. was mostly absent from the Lab-micro, preventing a linear regression between the compared

counts. Species that had previously demonstrated low classification performance resulted in poorer relation-

ships when computing the linear regression for the CNN-based pairs of counting methods. Comparatively

to its manually enumerated-based linear regressions (Supplemental A.2), Ceratium falcatiforme or fusus

and Chattonella spp. showed degraded R2 values and slopes across all 3 possible pairs, suggesting the ef-

fect of the classification performance upon the linearly modeled relationship. Ceratium furca also showed

some fluctuations when comparing automated vs manual regressions, but generally showed only a moderate

relationship.
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Figure A.3: Relationships between Lab-micro and SPC+CNN: Poorly linear-related species (Ceratium falcat-
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(a) SPC-Lab vs. Lab-micro (b) SPC-Pier vs. Lab-micro (c) SPC-Pier vs. SPC-Lab
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Figure A.4: Relationships between Lab-micro and SPC: Poorly linear-related species (Ceratium falcatiforme
or fusus, Ceratium furca, Chattonella spp, Pseudo-nitzschia spp.)
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The chapters of this thesis consist of material currently being prepared for submission. The thesis

author was the author of this material.

• Chapter 1-7 has material currently being prepared for submission as it may appear in K. Le, Z. Yuan,

A. Syed, E. Orenstein, D. Ratelle, M. Carter, S. Strang, K. Kenitz, P. Morgado, P. Franks, N. Vascon-

celos, and J. Jaffe, “Benchmarking the Automated Analysis of In situ Plankton Imaging and Recog-

nition,” Methods in Ecol Evol, 2021, in preparation.
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